Inicio
Noticias
Impactos de la extracción de agua subterránea en lagunas temporales de Doñana
Los desafíos de construir Variables Esenciales de la Biodiversidad
El papel de las rapaces en un mundo cambiante
Noticias
Impactos de la extracción de agua subterránea en lagunas temporales de Doñana
Se han monitoreado los cambios en el nivel del agua durante 25 años en varias lagunas temporales ubicadas a diferentes distancias de un área de bombeo en una zona turística limítrofe al Parque...
Water level changes have been monitored over 25 years in several temporary ponds located at different distances to a pumping area of a tourist resort fringing the Donana National Park (SW Spain). The numerical model MIKE SHE was set up to simulate pond water levels and hydroperiod fluctuations. It was calibrated for nine hydrological years and validated for two periods of eight hydrological years each to assess whether the duration of the pond wet phase (hydroperiod) significantly deviated from an expected pattern driven by rainfall and evapotranspiration. The model output indicated a satisfactory performance for all simulations. This approach provided two main conclusions: a) a long-term increasing trend in water losses on the pond water balance which has not been followed by a corresponding decreasing trend in rainfall, and b) these water losses were highest in the pond located at < 1 km to the pumping area and lowest in the pond located at a further distance (5.6 km) and at a lower altitude. These results suggest that, in the long run, a small groundwater abstraction rate has exerted a high hydrological pressure on the closest pond to the pumping area. Dimitriou et al (2017) Hydrodynamic numerical modelling of the water level decline in four temporary ponds of the Doñana National Park (SW Spain). J Arid Environ. Doi 10.1016/j.jaridenv.2017.09.004
http://www.sciencedirect.com/science/article/pii/S0140196317301684?via%3Dihub
Los desafíos de construir Variables Esenciales de la Biodiversidad
En todo el mundo se están recopilando muchos datos sobre biodiversidad, pero sigue siendo difícil reunir los conocimientos dispersos para evaluar el estado y las tendencias de la diversidad...
Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends.
The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, the challenges of a ‘Big Data’ approach to building global EBV data products across taxa and spatiotemporal scales is assessed, focusing on species distribution and abundance.
The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence-only or presence–absence data are sampled repeatedly with standardized protocols.
Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi-source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter- or extrapolation, and quantifying sources of uncertainty and errors in data and models.
To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), 11 key workflow steps are identified that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling of integrated data.
These steps are illustrated with concrete examples from existing citizen science and professional monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet Index and the Baltic Sea zooplankton monitoring.
The identified workflow steps are applicable to both terrestrial and aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and accessible metadata, and an overview of current data and metadata standards is provided. Several challenges remain to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous, multi-source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging methods and technologies for data collection such as citizen science, sensor networks, DNA-based techniques and satellite remote sensing, (iii) solving major technical issues related to data product structure, data storage, execution of workflows and the production process/cycle as well as approaching technical interoperability among research infrastructures, (iv) allowing semantic interoperability by developing and adopting standards and tools for capturing consistent data and metadata, and (v) ensuring legal interoperability by endorsing open data or data that are free from restrictions on use, modification and sharing.
Addressing these challenges is critical for biodiversity research and for assessing progress towards conservation policy targets and sustainable development goals. Kissling et al (2017) Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol Rev Doi 10.1111/brv.12359
http://onlinelibrary.wiley.com/doi/10.1111/brv.12359/abstract
La salinidad de los humedales induce a “efectos de arrastre” en la condición física de un migrante de larga distancia
La salinización está teniendo un gran impacto en los humedales y su biota en todo el mundo. Concretamente, muchas aves migratorias de los humedales están cada vez más expuestas a salinidad elevada...
Salinization is having a major impact on wetlands and its biota worldwide. Specifically, many migratory animals that rely on wetlands are increasingly exposed to elevated salinity on their nonbreeding grounds. Experimental evidence suggests that physiological challenges associated with increasing salinity may disrupt self-maintenance processes in these species. Nonetheless, the potential role of salinity as a driver of ecological carry-over effects remains unstudied. This study investigated the extent to which the use of saline wetlands during winter – inferred from feather stable isotope values – induces residual effects that carry over and influence physiological traits relevant to fitness in black-tailed godwits Limosa limosa limosa on their northward migration. Overwintering males and females were segregated by wetland salinity in West Africa, with females mostly occupying freshwater wetlands. The use of these wetlands along a gradient of salinities was associated with differences in immune responsiveness to phytohaemagglutinin and sized-corrected body mass in godwits staging in southern Europe during northward migration – 3,000 km from the nonbreeding grounds – but in males only. Indeed, males that used more saline wetlands in winter arrived at staging sites in poorer body condition than males that used freshwater wetlands. These findings provide a window onto the processes by which wetland salinity can induce carry-over effects and can help predict how migratory species should respond to future climate-induced increases in salinity. Masero et al (2017) Wetland salinity induces sex-dependent carry-over effects on the individual performance of a long-distance migrant. Sci Rep 7: 6867 DOI 10.1038/s41598-017-07258-w
Ciencia Ciudadana
Topics
BIODIVERSIDAD
Biodiversidad
En relación a la fauna, destacan sobradamente el grupo de aves. Más de 200 especies utilizan durante algún periodo del año este espacio para reproducirse, alimentarse o refugiarse. La gran movilidad de estas especies y su comportamiento migratorio fuera de la época de cría les permite desplazarse a zonas óptimas según cada época de año. En este sentido se pueden contar más de 140 aves que crían de modo más o menos regular en Doñana, y más de 100 especies que solo visitan Doñana para alimentarse y refugiarse en periodos pre y postnupcionales. Mucho menor en número, pero por ello no menos importantes son otras especies de vertebrados como los anfibios (12 especies), los reptiles (23 especies incluyendo las tortugas marinas), los peces (27 especies, de las cuales 7 son especies introducidas no originarias de los ecosistemas acuáticos), y los mamíferos (27 especies).
Doñana también alberga una rica comunidad de invertebrados, cuyo catálogo aumenta día a día, aportando con frecuencia nuevas especies para Doñana e incluso para la ciencia. Así se conocen 18 especies de libélulas y 45 especies de mariposas.
Indicadores
Indicadores y salidas gráficas
Búsqueda
Obtenido los indicadores
PRODUCCIÓN PRIMARIA Y CARBONO
PRODUCCIÓN PRIMARIA Y CARBONO
El ciclo del carbono
El intercambio de CO2 entre la Superficie y la atmósfera nos proporciona una información muy valiosa sobre el funcionamiento de un ecosistema. Un ecosistema determinado puede actuar como una fuente de CO2 (liberando CO2 a la atmósfera) o como sumidero (captándolo) según una serie de factores, por un lado la estructura del ecosistema (tipo de vegetación, de suelo, etc.) y por otro lado por factores climáticos (régimen de precipitación, temperatura media, etc.). Además, este intercambio neto de carbono varía en el tiempo tanto inter-anualmente (según la estación del año) como intra-anualmente (según factores como el régimen hídrico del año en curso o perturbaciones como plagas, incendios u otras).La observación sistemática en el tiempo del flujo de carbono nos permite entender la dinámica estacional del ecosistema (se necesitaría más de un año completo de datos para realizar esta tarea), las variaciones intra-anuales (para lo que sería necesario tener datos de 5 o más años), repercusiones del cambio climático en la dinámica del ecosistema (serían necesarias series de tiempo largas, de más de 10 años). En la actualidad existen principalmente dos fuentes de datos que proporcionan información sobre el ciclo de carbono y el del agua: datos derivados de las Torres Eddy Covariance, y datos derivados de teledetección.
Datos que se usan en este Observatorio Ecosistémico
Actualmente, los sensores a bordo de satélite son la única fuente de datos cuantitativa y espacialmente explícita capaz de proporcionar observaciones frecuentes de la cubierta terrestre (Scholes et al., 2008), todos ellos requerimientos básicos de un sistema como éste. Una vez desarrollado, el sistema proporcionará información de bajo coste, con una cobertura espacial continua y una alta frecuencia de actualización. Ello permitirá un seguimiento en tiempo real, la detección temprana de anomalías y la capacidad de predecir a corto y medio plazo algunos de los parámetros que definen el funcionamiento de los ecosistemas. Otra fuente de datos que se utilizarán en este Observatorio son los derivados de las torres Eddy covariance. Sin duda son los datos más precisos que existen en la actualidad para el estudio del flujo neto de CO2 entre la Superficie y la atmósfera. Estos datos han mejorado considerablemente nuestra capacidad para entender la dinámica inter e intra anual de diversos ecosistemas de la Superficie terrestre.Doñana y sus ecosistemas
La comarca de Doñana consta de dos grandes unidades ambientales: las marismas del Guadalquivir, que se inundan cada año y están formadas por los limos arrastrados por el río, y los cotos arenosos, cubiertos de sedimentos eólicos de origen marino. Una gran parte de las marismas se han desecado desde la primera mitad del siglo XX y se dedican a la agricultura, principalmente de regadío, con un papel destacado de los arrozales. En los cotos, una parte se dedica a agricultura intensiva, generalmente bajo plástico, y otra se plantó hace más de medio siglo con pinos piñoneros y eucaliptos (aunque estos últimos han sido eliminados en los últimos lustros). En las áreas menos transformadas, el tipo de vegetación depende en gran medida de la disponibilidad de agua: en la marisma alta la inundación anual dura poco tiempo y crecen los almajos y las herbáceas, mientras que en la marisma baja el agua dura más tiempo y predominan el bayunco y la castañuela; en los cotos, las zonas altas, con un acceso más limitado a la capa freática, están dominadas por cistáceas, en especial el jaguarzo, romero, y en algunas zonas sabinas y enebros; esta vegetación xerofítica es conocida como "monte blanco"; las zonas bajas se inundan en los inviernos más lluviosos y en ellas predominan los brezos, un tipo de vegetación hidrofítica llamado localmente "monte negro". El ecotono o transición entre los cotos y la marisma se conoce como La Vera, y en ella abundan los pastizales.Indicadores
Indicadores y salidas gráficas
Búsqueda
Obtenido los indicadores
AGUA Y SU DINÁMICA
El agua y su dinámica
Las marismas son sistemas muy dinámicos. Dependen de los aportes de los ríos y de las precipitaciones de cada año. Además dependen de la calidad del agua y de los arrastres de sedimentos.
El sistema de lagunas temporales también es estacional. Son lagunas dulces alimentadas por aguas subterráneas. Aunque siguen un patrón de inundación en otoño e invierno y secarse total o parcialmente en verano, al depender del freático y no tanto de a escorrentía superficial su dinámica se encuentra desacoplada de la marisma.
En este seguimiento empleamos imágenes de satélite para ver las tendencias temporales y espaciales en el nivel de inundación de la marisma. Básicamente responder a la pregunta de cuántos días permanece inundado cada punto, y cuál es el nivel de agua que se alcanza en cada momento. El número de días que cada punto permanece inundado es lo que llamamos “hidroperiodo” y es lo que determina que comunidades de vegetación crecen en el lugar, y que especies animales viven en él. Cómo la inundación depende de la lluvia y esta es muy variable de un año a otro el hidroperiodo de cada punto es a su vez muy variable entre años. Esa variabilidad a su vez hace difícil determinar las tendencias temporales a medio y largo plazo salvo que se disponga de largas series temporales. Además de saber si un punto está inundado nos interesa saber las características de la masa de agua, la profundidad, la turbidez y el grado de desarrollo de comunidades de plantas acuáticas, emergentes, flotantes y sumergidas.
El seguimiento emplea actualmente imágenes de los satélites Landsat desde el año 1972 hasta la actualidad, utilizando los sensores MSS, TM, ETM+ y OLI/TIR. Las imágenes se corregistran espacialmente, se corrigen radiométricamente y se normalizan. Sobre esa serie de imágenes se extraen los indicadores de superficie inundada y de calidad del agua.
Indicadores
Indicadores y salidas gráficas
Búsqueda
Obtenido los indicadores
CLIMA
PORQUE, ESTÁNDARES, QUE EXISTE Y REDES
ESTÁNDARES La ubicación, los instrumentos y su disposición (protección, orientación, altura) influyen de modo importante en las medidas. Con el fin de comparar datos meteorológicos entre diferentes sitios, su registro fue estandarizado por la World Meteorological Organisation (WMO) ya en los años 50 del ciclo pasado. En los sitios LTER se han definido estándares y 5 niveles de precisión (de 0 a 4) para la toma de datos meteorológicos. Cada sitio LTER debe cumplir al menos con el nivel 1 que incluye el registro de la temperatura y la precipitación, definidos como esenciales para estudiar variaciones en los ciclos anuales y en las tendencias a largo plazo en el medio físico. El nivel 1 determina además que la toma de datos debe realizarse varias veces al día y debe estar automatizada (empleo de sensores electrónicos y registro digital).
QUE EXISTE En la Reserva Biológica de Doñana, cerca del Palacio, existe una estación meteorológica desde el año 1978. Su registro es manual (instrumentos analógicos), y su lectura se realiza una vez al día (por las mañanas), anotando la temperatura mínima y máxima (del día anterior) de dos termómetros (húmedo y seco), además de la precipitación. Esta estación manual ha sido revisada por la Agencia Estatal de Meteorología (AEMET) hasta el año 2008. Desde 2008, la AEMET ha instalado una nueva estación de la AEMET con instrumentación moderna que permite el registro automatizado, tomando datos adicionales como el viento y humedad. Desde noviembre de 2013 la EBD-CSIC ha instalado otra estación más, consistente en un multisensor de la marca VAISALA, cuyos datos se guardan automáticamente en las bases de datos de la EBD-CSIC. Se ponen a disposición del usuario los datos de la estación manual y de la VAISALA. Existen otros puntos en la Reserva Biológica de Doñana donde se toman variables meteorológicas en combinación con otras mediciones que amplían los datos relacionados con el estudio del clima (humedad del aire y del suelo, radiación solar, temperatura del suelo, temperatura, flujo de CO2….).
REDES. Existen varias redes de datos aunque las instalaciones controladas por la EBD-CSIC están pendientes de incorporarse. A través de la estación de la AEMET Doñana aporta datos la red nacional.
Indicadores
Indicadores y salidas gráficas
Búsqueda
Obtenido los indicadores